
Brutus: Refuting the Security Claims
of the Cache Timing Randomization

Countermeasure Proposed in CEASER

Rahul Bodduna , Vinod Ganesan, Patanjali SLPSK ,
Kamakoti Veezhinathan, and Chester Rebeiro

Abstract—Cache timing attacks are a serious threat to the security of computing

systems. It permits sensitive information, such as cryptographic keys, to leak

across virtual machines and even to remote servers. Encrypted Address Cache,

proposed by CEASER – a best paper candidate at MICRO 2018 – is a promising

countermeasure that stymies the timing channel by employing cryptography to

randomize the cache address space. The author claims strong security

guarantees by providing randomization both spatially (randomizing every address)

and temporally (changing the encryption key periodically). In this letter, we point

out a serious flaw in their encryption approach that undermines the proposed

security guarantees. Specifically, we show that the proposed Low-Latency Block

Cipher, used for encryption in CEASER, is composed of only linear functions which

neutralizes the spatial and temporal randomization. Thus, we show that the

complexity of a cache timing attack remains unaltered even with the presence of

CEASER. Further, we compare the encryption overheads if CEASER is

implemented with a stronger encryption algorithm.

Ç

1 INTRODUCTION

CACHE timing attacks are a potent side-channel technique exploit-
ing the shared cache memories present in modern daymicroproces-
sors. In a typical attack, the attacker executes a spy program in the
same CPU as a victim application. The spy is designed to perform a
set of memory operations and monitor the execution time. The exe-
cution time, which varies due to interference with the victim in the
shared cache memory, can be used to reveal sensitive information
about the victim. These attacks have been used in a variety of appli-
cations, such as, breaking cryptographic ciphers [3], [13], undermin-
ing Operating System security [10], fingerprinting websites [17],
and logging keystrokes [16]. They have been applied on cloud com-
puting platforms [16] and to attack remote computers [12]. These
attacks rely on the fixed mapping from memory addresses to cache
sets. Thus, a conflict between the spy and victim in the cache, can
partially reveal information about the victim’s memory operations,
which in turn is correlated to sensitive information.

A popular approach to counter cache timing attacks is based on
randomizing cache addresses thus breaking the fixed mapping in
the cache memory. CEASER [15] proposed at MICRO 2018, is one
such randomization countermeasure which provides randomiza-
tion both spatially and temporally. Every address in the cache is ran-
domized using an encryption with a secret key that is generated
internally in the hardware. The encryption causes memory
addresses that are spatially correlated to get mapped to random
cache sets. This makes it difficult for an attacker to identify
addresses that conflict with the victim process. Temporal randomi-
zation is achieved by changing the encryption key periodically.
Thus, the same memory address would get mapped to different
cache sets over time. Temporal randomization would ensure that,

even if the attacker manages to identify a set of addresses that con-
flict with an address in the victim’s memory space, the change in
encryption key, would shuffle the cache set mapping, thus invalid-
ating the conflict. CEASER also provides a security evaluation,
where they claim that the complexity of finding such a conflicting
set of addresses, called an eviction set, is OðL2Þ, where L is the num-
ber of sets present in the cache. In ISCA 2019, an extension of
CEASER called CEASER-S [14] was proposed to strengthen the
countermeasure against newly found attacks [18], [19].

Central to the security of CEASER and CEASER-S is the encryp-
tion algorithm. A flaw in the encryption algorithm can undermine
the entire scheme permitting the spy process to identify eviction
sets and there by discover the victim’s memory access patterns. Fur-
ther, since the encryption algorithm is in the critical path in the
cache memory, it has to have low overheads. To satisfy these
requirements, CEASER proposes a Low-Latency Block Cipher
(LLBC) based on a 4-round Feistel Network [8] and an 80-bit key.
CEASER-S also reuses the same LLBC algorithm to randomize the
cache addresses. In order to achieve the crucial requirement of low
latency, the authors of CEASER have (1) reduced the number of
rounds of the cipher to 4 (compared to traditional ciphers which
have 16 to 18 rounds [2], [7]); and, (2) simplified the Substitution
and Permutation function in the cipher to use only linear functions.
Traditional ciphers use a mixture of linear and non-linear functions
to increase security.

Due to this linear nature of the LLBC algorithm, the encrypted
output can be represented by linear functions of the input and key.
In this paper we present a major flaw in the design of the Low-
Latency Block Cipher that can nullify all the security guarantees
provided by CEASER and CEASER-S. We show that the linearity of
CEASER’s cipher breaks the temporal and spatial randomization
that CEASER provides. If an attacker finds an eviction set, the colli-
sion persists even after the cipher’s key is changed. In summary,
our key contributions are as follows.

� We show that CEASER fails to protect against cache timing
attacks due to the linear properties of the LLBC cipher used.

� We further show that, due to the linearity in the cipher
algorithm, the complexity of finding an eviction set is the
same as when there is no randomization present.

� While randomization of cache addresses, if done properly,
is a promising countermeasure for cache timing attacks,
we are still far from finding a low-overhead solution. We
show that replacing the LLBC with a standard lightweight
cipher, such as PRINCE [4] can lead to considerable over-
heads on both FPGAs and ASICs.

This paper is structured as follows: The background is pre-
sented in Section 2. A detailed illustration of the weakness in
CEASER is discussed in Section 3 followed by experimental valida-
tion of the PRINCE cipher. The final section concludes the paper.

2 BACKGROUND

This section provides the necessary background on cache timing
attacks, block ciphers and the LLBC algorithm used in CEASER and
CEASER-S.

Cache Timing Attacks. In cache timing attacks that target the Last
Level Cache (LLC), a crucial aspect for the attacker is to find themin-
imum set of memory addresses in the spy process that can evict a
targeted victim address from the LLC. Finding this set, called the
eviction Set, is difficult due to two reasons. First, the LLC is physi-
cally addressed and physical addresses are typically hidden from
user space programs. Second, most LLCs are designed with slices
and have an undisclosed hash function that distributes addresses
across the slices [11].

� The authors are with the Department of Computer Science and Engineering, Indian
Institute of Technology Madras, Chennai, Tamil Nadu 600036, India.
E-mail: {rahulb, vinodg, slpskp, kama, chester}@cse.iitm.ac.in.

Manuscript received 9 Oct. 2019; revised 22 Nov. 2019; accepted 11 Dec. 2019. Date of
publication 6 Jan. 2020; date of current version 27 Jan. 2020.
(Corresponding author: Rahul Bodduna.)
Digital Object Identifier no. 10.1109/LCA.2020.2964212

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020 9

1556-6056� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on August 31,2021 at 13:43:49 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2098-2606
https://orcid.org/0000-0003-2098-2606
https://orcid.org/0000-0003-2098-2606
https://orcid.org/0000-0003-2098-2606
https://orcid.org/0000-0003-2098-2606
https://orcid.org/0000-0003-0754-2219
https://orcid.org/0000-0003-0754-2219
https://orcid.org/0000-0003-0754-2219
https://orcid.org/0000-0003-0754-2219
https://orcid.org/0000-0003-0754-2219
mailto:rahulb@cse.iitm.ac.in
mailto:vinodg@cse.iitm.ac.in
mailto:slpskp@cse.iitm.ac.in
mailto:kama@cse.iitm.ac.in
mailto:chester@cse.iitm.ac.in

Given a targeted victim address Av, an eviction set is identified
in two steps. First, a memory access to Av is done and the data is
stored in the LLC. Then, randomly chosen memory addresses from
the spy’s memory are accessed one after the other until Av is
evicted from the cache. This set of addresses, in the worst case, can
be as large as the entire cache. In the second step, the set is trimmed
to comprise of the smallest number of addresses that can evict Av.
This minimal set is called the eviction set.

If the total number of cache lines in a W -way set associative
LLC is L, finding the eviction set require OðL2Þ memory accesses,
while the size of the eviction set is OðWÞ.

Block Ciphers. A block cipher is an encryption algorithm that
maps a block of plaintext to a ciphertext. A typical block cipher
operates over multiple rounds, with each round comprising confu-
sion and diffusion functions. Diffusion is done by linear functions
which help distribute the plaintext from one byte over several
bytes. Linear functions are represented as follows:

A
�
x1; x2; . . . ; xn

�
¼ a1 � x1 � a2 � x2 . . .an � xn: (1)

Confusion operations reduce the correlation between the input and
the output and are often implemented by non-linear substitution
boxes (S-Boxes). A non-linear function is represented as follows:

A
�
x1; x2; . . . ; xn

�
¼ �n

j¼1aj

Y
z2Z

xz; (2)

where x1, x2, . . ., xn are function inputs, a1, a2, . . ., an are constant
binary coefficients and Z � f1; 2 . . . ; ng.

Low-Latency Block Cipher used in CEASER. CEASER and
CEASER-S employ a Low-Latency Block Cipher using a 4-round
Feistel structure to randomize addresses in the cache memory. The
40-bit memory address entering the cache is split into two equal
parts Lð0Þ and Rð0Þ. In each round r (1 � r � 4), a 20-bit round key
(KðrÞ) is used and the following operations are performed

LðrÞ ¼ Rðr�1Þ � FðLðr�1Þ; KðrÞÞ;
RðrÞ ¼ Lðr�1Þ;

(3)

where function F comprises a substitution followed by a permuta-
tion operation as shown in Fig. 1. The substitution operation takes
KðrÞ and Lðr�1Þ as inputs and outputs a 20-bit result. The output of
the substitution operation is then shuffled using a permutation
operation P ðrÞ. The substitution and permutation operations are
linear, thus, the F function in the LLBC cipher is linear. Half the
bits of a round’s output is derived from this F function while
the other half is obtained from the round’s input. Thus, every bit of
the round’s output is a linear function of the secret key and the
round input. The output at end of 4 rounds (r ¼ 4) is considered
the encrypted address and used as an index to the cache sets.

3 THE PITFALL IN CEASER’S LLBC DESIGN

In this section we show that the complexity of mounting an attack
on CEASER is same as CEASER without remapping. We first show
that the temporal and spatial randomization with respect to each
LLBC that CEASER provides is broken due to the linear nature of
the operations used in the LLBC algorithm. As a result, even
though CEASER switches between the two LLBCs to randomize
cache mappings, attacks can still be easily mounted.

Linearity of the LLBC Algorithm. The output of the first round is
linearly related to the address sent to the cache. Each output bit of
a subsequent round is a linear function of the previous round’s
output. Thus, the output of the second, third, and fourth rounds
are linearly related to the address sent to the cache. Each bit (oi,
1 � i � 40) of the encrypted address can thus be represented by
linear equations of the following form:

oi ¼ CðAÞ � DðKÞ ¼ c1a1 � c2a2 � � � � � c40a40�
d1k1 � d2k2 � � � � � d80k80;

(4)

where A is the address sent to the cache; K an 80-bit string of
concatenated round keys (K ¼ Kð1ÞjjKð2ÞjjKð3ÞjjKð4Þ); aj and kl
denote the jth (1 � j � 40) and lth (1 � l � 80) bit of A and K

respectively. The functions C and D are linear with coefficients cj
and dl respectively that are chosen randomly from the set {0, 1} dur-
ing design.

Refuting CEASER’s Claim on Temporal Randomization. The objec-
tive of CEASER is to randomize cache addresses using the LLBC,
making it difficult for a spy process to find a set of memory
addresses that collide with a victim’s memory access. To further
strengthen the scheme, LLBC’s secret key is changed periodically.
Thus, even if the spy manages to find addresses that collide with
the victim’s address, the change in key would change the randomi-
zation, thus invalidating the collision. The benefits of finding a col-
lision is therefore short lived.

In this section, we show that changing the LLBC key, in fact,
does not invalidate the collision. The colliding spy addresses con-
tinue to collide with the victim address even after the key is
changed. To see this, assume that at some instant, two addresses
As (in the spy address space) and Av (in the victim address space)
collide in the cache. A collision means that the corresponding
encrypted addresses map to the same cache set. Consider a single
bit oi (1 � i � indexBits) of the encrypted addresses, where index-
Bits is the number of address bits used to index into the cache.
From Equation (4), we obtain the following equation

CðAsÞ � DðKÞ ¼ oi ¼ CðAvÞ � DðKÞ: (5)

Thus,

CðAsÞ ¼ CðAvÞ: (6)

We see that the key has no influence on the collision. Thus the colli-
sion persists even after the key is changed.

We illustrate the key invariance and its impact with an example in
Fig. 2. Assume a Feistel Network whose output bits (O0; O1; O2; O3)
are described in the figure. The bits O1 and O0 are used to index
into cache set. Assume two 4-bit addresses Av ¼ ð0000Þ2 and
As ¼ ð1110Þ2 and at some instant of time, the key K1 used by the
Feistel Network is ð1101Þ2. On encryption, Av and As result in
ð0011Þ2 and ð0111Þ2 respectively. The lower two bits of both
encrypted addresses is ð11Þ2. Therefore, the two addresses map to
the same cache set. When the key is changed to K2 ¼ ð0011Þ2, the
addresses Av and As now get encrypted to ð1000Þ2 and ð1100Þ2
respectively. While we notice that the cache set change from ð11Þ2 to
ð00Þ2, the collision betweenAv andAs is maintained, i.e bothAv and
As continue to map to the same cache set. Thus, if an attacker can
find a set of addresses that collide in the cachewith a victim address,

Fig. 1. An Overview of the Low-Latency Block Cipher (LLBC) used in CEASER [15]
and CEASER-S [14].

10 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on August 31,2021 at 13:43:49 UTC from IEEE Xplore. Restrictions apply.

the collision continues to persist with the change in encryption key
giving ample time for the attacker tomount a cache timing attack.

Refuting CEASER’s Claim on Spatial Randomization. Due to the
cache address encryption and the periodic change in key,
CEASER claims that the probability of finding an eviction set is
very low – in the order of 100 years. In this section, we show that, it
takes a one-time effort of OðL2Þ accesses, where L is the number of
cache lines in the LLC, to partially reverse engineer the CðAÞ used
in Equation (4). As discussed in CEASER, finding an eviction set is
sufficient to break spatial randomization.

An essential requirement to build an eviction set is to identify
addresses that map to the same cache set. In Equation (4), the
encrypted output bit oi depends on a subset of the address bits a1 to
a40. This subset is defined by the binary coefficients c1 to c40 respec-
tively. Flipping an even number of address bits in the subset will
not alter the encrypted output bit oi. Flipping even number of
address bits in every encrypted output bit oi (1 � i � indexBits)
would form a new address which gets mapped to the same cache
set as before, thus aiding in creation of the eviction set. Fig. 3 pro-
vides an example of this phenomenon. Assume a physical address
A ¼ ð0000Þ2 that is encryptedwith a keyK ¼ ð1101Þ2 to produce the
encrypted address ð1001Þ2. Flipping a0, a1 and a2 produces a differ-
ent address ð1110Þ2 but the encrypted address ð0001Þ2 maps to the
same cache set as ð1001Þ2. Thus, ð0000Þ2 ad ð1110Þ2 can be part of the
same eviction set.

The difficulty in this scheme is to identify the bits to be flipped
so that the encrypted address continues to be mapped to the same
cache set. We call these bits the Invariant Bits. Finding the Invariant
Bits is system specific as Equation (4) is defined at the design time
and kept secret. We can follow a similar approach as the eviction
set algorithm described in [11] (and described in Section 2) to find
the Invariant Bits. Once found, given any physical address, an evic-
tion set can be created in Oð1Þ by flipping the Invariant bits. Due to
the key invariance property (Fig. 2), finding the Invariant Bits
needs to be done only once for a system.

Attacking CEASER when Two Different LLBCs are Used. To
achieve gradual remapping CEASER suggests the use two parallel

LLBC circuits as shown in Fig. 4 to reduce overheads of remap-
ping. Although not explicitly mentioned in [15], the two LLBC cir-
cuits may have different encryption algorithms. In this section we
show that CEASER breaks even with such a configuration.

Due to the presence of the two different LLBC algorithms, there
would be two eviction sets corresponding to an address Av; one
eviction set for each LLBC. At any given instant, the attacker would
not know which LLBC is used to encrypt Av, thus needs to try both
eviction sets. Finding the pair of eviction sets can be done using
techniques similar to those described in [11] with additional checks
to ensure that each eviction set corresponds to a different LLBC.

Fig. 5 shows the time required to construct the eviction set
with different number of cache sets and associativity and CEASER

configured with two LLBC circuits as shown in Fig. 4. We assume
that the physical offset is 30-bits. As the associativity of the cache
increases, the size of the eviction set also increases and therefore takes
longer to construct. Further, it takes longer to locate the address Av,
thus a linear increase in time with cache size. We experimented
by exhaustively toggling a set of 5-bits of the address for each cache
configuration and estimated the time taken to find an eviction
set. We see that time taken to find the eviction set is well with in the
practical limits.

4 REPLACING THE LLBC FOR BETTER SECURITY

While randomization is an excellent proposal to mitigate several
cache timing attack variants, the limitation of CEASER is the use of
an encryption algorithm without non-linear operations. We evalu-
ate a promising LLBC candidate called PRINCE [4] and compare it
with CEASER’s LLBC. PRINCE is a 12 round block cipher with an
FX construction [9] and non-linear S-Box operations.

We implemented CEASER’s LLBC and compared it with
PRINCE. Table 1 shows the results for the two implementations
along with a 7-round PRINCE implementation. All the designs
were synthesized on Xilinx Artix-7 for FPGAs and at Intel’s 22 nm
technology node for ASICs using Synopsis Design Compiler. We
note considerable overheads, of upto 7:5� compared to CEASER’s
LLBC on ASIC. The area requirements increase by over 22� on
the same platform. We also experimentally verified that PRINCE
does not exhibit the spatial and temporal vulnerabilities that
CEASER suffers. To estimate run time overheads with PRINCE we
use Sniper [5] (gainestown configuration), and we run memory
intensive multi-threaded Splash2 workloads (Misses Per Kilo

Fig. 3. Illustration of a invariance on toggling input bits. The Feistel function is
same as used in Fig. 2

Fig. 2. Illustration of a key dependent Feistel Network showing key invariance.

Fig. 4. Organization of LLBC circuits in CEASER.

Fig. 5. Time to find eviction sets for varying cache configuration.

IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020 11

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on August 31,2021 at 13:43:49 UTC from IEEE Xplore. Restrictions apply.

Instructions (MPKI) > 10). We found these memory intensive
workloads showed a performance degradation of 3.2 percent on an
average. We also observe that higher the MPKI, larger the perfor-
mance impact. Hence performance impact will bemore pronounced
with respect to CloudSuite [6] and TPC-C [1] applications which
have higher MPKI. We intend to perform this rigorous analysis of
evaluating the fundamental tradeoff between strength of the cipher
and processor’s performance with Encrypted Address Caches as a
future work.

5 CONCLUSION

While the cache address randomization proposed in CEASER [15] is
a promising solution to counter cache timing attacks, it is still an
open challenge to design efficient encryption algorithms that can
perform the address randomization securely. The current algo-
rithm proposed in [15] has a serious flaw due to the absence of
non-linear components. This flaw entirely compromises the secu-
rity provided by cache address encryption. A direct replacement of
CEASER’s cipher with standard low-latency block ciphers like
PRINCE, that does not suffer from this flaw, has significant perfor-
mance penalties. Such performance overheads, of up to 7:5�, is
unacceptable in high-speed microprocessors. This opens up a need
for specialized low-latency encryption techniques that are exclu-
sively designed for cache address encryption, that can provide the
security guarantees with acceptable performance overheads.

REFERENCES

[1] “TPC-C,” Accessed: 2015. [Online]. Available: http://www.tpc.org/tpcc/
default.asp

[2] K. Aoki et al., “Camellia: A 128-bit block cipher suitable for multiple plat-
forms design andanalysis,” in Proc. Int. Workshop Sel. Areas Cryptography,
2000, pp. 39–56.

[3] J. Bonneau and I. Mironov, “Cache-collision timing attacks against AES,” in
Proc. Int. Workshop Cryptographic Hardware Embedded Syst., 2006, pp. 201–215.

[4] J. Borghoff et al., “PRINCE – a low-latency block cipher for pervasive com-
puting applications,” in Proc. Theory Appl. Cryptology Inf. Security, 2012,
pp. 208–225.

[5] T. E. Carlson et al., “Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulation,” in Proc. Int. Conf. High
Perform. Comput. Netw. Storage Anal., 2011, pp. 1–12.

[6] M. Ferdman et al., “Clearing the clouds: A study of emerging scale-out
workloads on modern hardware,” in Proc. 17th Int. Conf. Architectural
Support Program. Languages Operating Syst., 2012, pp. 37–48.

[7] FIPS46–3, “Data encryption standard,” Federal Inf. Process. Standards Publ.,
pp. 46–3, 1999.

[8] J. Katz et al., Handbook of Applied Cryptography. Boca Raton, FL, USA: CRC.
[9] J. Kilian et al., “How to protect DES against exhaustive key search,” in Proc.

Annu. Int. Cryptology Conf., 1996, pp. 252–267.
[10] M. Lipp et al., “Meltdown: Reading kernel memory from user space,” in

Proc. 27th USENIX Security Symp., 2018, pp. 973–990.
[11] F. Liu et al., “Last-level cache side-channel attacks are practical,” in Proc.

IEEE Symp. Security Privacy, 2015, pp. 605–622.
[12] Y. Oren et al., “The spy in the sandbox: Practical cache attacks in javascript

and their implications,” in Proc. 22nd ACM SIGSAC Conf. Comput. Commun.
Security, 2015, pp. 1406–1418.

[13] C. Percival, “Cache missing for fun and profit (2005),” 2015. [Online].
Available: http://www.daemonology.net/papers/htt.pdf

[14] M. Qureshi, “New attacks and defense for encrypted-address cache,” in
Proc. 46th Int. Symp. Comput. Architecture, 2019, pp. 360–371.

[15] M. K. Qureshi, “CEASER: Mitigating conflict-based cache attacks via
encrypted-address and remapping,” in Proc. 51st Annu. IEEE/ACM Int.
Symp. Microarchitecture, 2018, pp. 775–787.

[16] T. Ristenpart et al., “Hey, you, get off of my cloud: Exploring information
leakage in third-party compute clouds,” in Proc. 16th ACM Conf. Comput.
Commun. Security, 2009, pp. 199–212.

[17] A. Shusterman et al., “Robust website fingerprinting through the cache occu-
pancy channel,” in Proc. 28th USENIX Security Symp., 2019, pp. 639–656.

[18] W. Song and P. Liu, “Dynamically finding minimal eviction sets can be
quicker than you think for side-channel attacks against the LLC,” in Proc.
22nd Int. Symp. Res. Attacks Intrusions Defenses, 2019, pp. 427–442.

[19] P. Vila et al., “Theory and practice of finding eviction sets,” IEEE Symp.
Secur. Privacy, pp. 39–54, 2018.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

TABLE 1
Overheads of CEASER’s LLBC with a Stronger Cipher PRINCE

on ASIC and FPGAs

CEASER’s PRINCE PRINCE

LLBC (12 rounds) (7 rounds)

Delay(FPGA) 3.1 ns 14.7 ns 8.7 ns
Area(FPGA LUTs) 135 863 569
Latency(FPGA) 1� 4:7� 2:8�
Delay(ASIC) 250 ps 1890 ps 980 ps
Area(ASIC Cells) 237 5327 3737
Latency(ASIC) 1� 7:5� 3:92�

We define latency as the ratio of the delay incurred due to using any encryption
to the delay incurred due to using the Feistel Network proposed in CEASER.

12 IEEE COMPUTER ARCHITECTURE LETTERS, VOL. 19, NO. 1, JANUARY-JUNE 2020

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on August 31,2021 at 13:43:49 UTC from IEEE Xplore. Restrictions apply.

http://www.tpc.org/tpcc/default.asp
http://www.tpc.org/tpcc/default.asp
http://www.daemonology.net/papers/htt.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

