
A Case for Generalizable DNN Cost Models for
Mobile Devices

Vinod Ganesan∗, Surya Selvam∗, Sanchari Sen†, Pratyush Kumar∗ and Anand Raghunathan†
∗ Department of Computer Science and Engineering, IIT Madras, India
† School of Electrical and Computer Engineering, Purdue University

{vinodg,cs16b029,pratyush}@cse.iitm.ac.in, {sen9,raghunathan}@purdue.edu

Abstract—Accurate workload characterization of Deep Neural
Networks (DNNs) is challenged by both network and hardware
diversity. Networks are being designed with newer motifs such as
depthwise separable convolutions, bottleneck layers, etc., which
have widely varying performance characteristics. Further, the
adoption of Neural Architecture Search (NAS) is creating a
Cambrian explosion of networks, greatly expanding the space
of networks that must be modeled. On the hardware front,
myriad accelerators are being built for DNNs, while compiler
improvements are enabling more efficient execution of DNNs on a
wide range of CPUs and GPUs. Clearly, characterizing each DNN
on each hardware system is infeasible. We thus need cost models
to estimate performance that generalize across both devices and
networks. In this work, we address this challenge by building
a cost model of DNNs on mobile devices. The modeling and
evaluation are based on latency measurements of 118 networks
on 105 mobile System-on-Chips (SoCs). As a key contribution,
we propose that a hardware platform can be represented by its
measured latencies on a judiciously chosen, small set of networks,
which we call the signature set. We also design a machine learning
model that takes as inputs (i) the target hardware representation
(measured latencies of the signature set on the hardware) and
(ii) a representation of the structure of the DNN to be evaluated,
and predicts the latency of the DNN on the target hardware. We
propose and evaluate different algorithms to select the signature
set. Our results show that by carefully choosing the signature set,
the network representation, and the machine learning algorithm,
we can train accurate cost models that generalize well. We
demonstrate the value of such a cost model in a collaborative
workload characterization setup, wherein every mobile device
contributes a small set of latency measurements to a centralized
repository. With even a small number of measurements per
new device, we show that the proposed cost model matches
the accuracy of device-specific models trained on an order-of-
magnitude larger number of measurements. The entire codebase
is released at https://github.com/iitm-sysdl/Generalizable-DNN-
cost-models.

Index Terms—runtime, deep learning, mobile devices, machine
learning

I. INTRODUCTION

Deep Neural Networks (DNNs) have achieved remarkable

success in a wide range of domains. As they get deployed on

resource-constrained platforms, the focus in designing DNNs

is shifting from designing accurate networks to designing

accurate and efficient networks. On the one hand, this is

Surya Selvam is currently a PhD student at Purdue University (sel-
vams@purdue.edu)
Sanchari Sen is currently a research scientist at IBM T.J. Watson Research
Center, Yorktown Heights, NY (sanchari.sen@ibm.com)

challenged by the need to characterize DNNs on a wide variety

of hardware devices - different generations of CPUs, GPUs

and the rapidly increasing set of accelerators. On the other

hand, there is a growing diversity of neural networks due

to newer design motifs such as skip connections, depthwise

separable convolutions, bottleneck layers, etc. Further, the

adoption of Neural Architecture Search (NAS) [1], [2] is

creating a Cambrian explosion in networks with characteristics

that often differ from human-designed networks. This product

space of DNNs and hardware platforms is increasing at a scale

where explicitly measuring the run-time of each network on

each hardware is too expensive. It is thus critical to create

cost models that can estimate latency for a given network

and hardware platform. Unfortunately, existing efforts on

such cost models are restricted to either a limited space of

networks (e.g., in the context of fine-tuning a base network

structure), or a limited set of hardware platforms. Further, most

existing studies train separate cost models for each hardware

platform [2]–[5], requiring a large number of measurements

across hardware. Thus, such approaches may not be feasible

in the context of large-scale deployment of DNNs in practice.

For example, the developer of a DNN-enabled mobile app

may want to estimate latency on the wide range of devices on

which the app may be installed without the ability to explicitly

characterize on each of them.

In this paper, we systematically study DNN cost models

on a large collected data-set consisting of run-times of 118

networks on 105 mobile devices. The 118 networks consist

of popular DNNs for computer vision applications as well

as randomly generated DNNs with varying number of layers,

operators, filter-sizes, and channels. The 105 mobile devices,

which are largely obtained by crowd-sourcing, represent CPUs

used in more than 72% of today’s mobile devices [6]. On each

device, we measure the latency of each network executed 30

times using a custom Android app.

With exploratory data analysis of the variation in measured

latencies across networks and devices, we establish the need

for good cost models. We then focus on an essential aspect of

a generalizable cost model: the input representation for both

the network and the hardware platform. We represent each

network by encoding layer-wise its operators (Conv, ReLU,

etc.) and parameters (kernel size, stride, padding, etc.) as a

vector. For the latter, we find that representing a hardware

platform by basic parameters like core frequency and main

169

2020 IEEE International Symposium on Workload Characterization (IISWC)

978-1-7281-7645-1/20/$31.00 ©2020 IEEE
DOI 10.1109/IISWC50251.2020.00025

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Characterization framework for DNNs on mobile devices. Our network set includes both randomly generated DNNs as well as hand-designed [7]–[9]
and NAS generated [1], [2], [10], [11] DNNs. We quantized each DNN to 8-bits using TFLite’s post-training quantizer. We developed an Android app with
the TFLite interpreter to execute the DNNs on the devices. The app schedules each DNN on the CPU and measures the inference latency, averaged across 30
runs. The measured values along with some queried hardware parameters are sent over HTTP to a database. We crowd-sourced the application and collected
data on 105 mobile devices.

memory size alone leads to poor accuracy. One way to improve

accuracy is to use detailed micro-architectural features to

represent the hardware. However, such details may not always

be available to a software developer. Instead, we propose an

alternative approach of representing each hardware platform

by the run-times of a small signature set of networks on it.

To maximize the model’s accuracy, we evaluate three sets

of methods to select the signature set: random sampling (RS),

Mutual Information based sampling (MIS), and Spearman Cor-

relation Coefficient based sampling (SCCS). We use XGBoost,

a state-of-the-art ML algorithm based on gradient boosting, as

the regression method to estimate runtime. In our experiments,

we found that even a very small signature set of up to 10

networks leads to cost models with high accuracy.

We further observe that the learnt cost model generalises

well across networks and hardware platforms. However, gen-

eralisation is weaker when the cost model is tested on an

adversarially chosen small set of hardware platforms.

In summary, we present the first systematic study of cost

models for estimating run-times of DNNs across a wide-

range of mobile devices. Our analysis suggests a simple,

yet effective, method for building generalizable cost models

through collaboration:

• Maintain a repository of the run-times on different de-

vices of a small signature set of up to 10 networks.

• Use these run-times as a representation for each device

to train a cost model on a larger set of networks.

• For a new network, use the cost model to predict the run-

time on any device with a representation in the repository.

• For a new device, measure the run-time of the signature

set and add it to the repository.

• Periodically fine-tune the cost model as more measure-

ments are added in the repository.

With our collected data, we simulate such a collaborative

framework. We find that the cost model trained on the reposi-

tory matches the accuracy of device-specific models trained

on an order-of-magnitude larger number of measurements.

Building and maintaining such a global framework would be

of interest to both network and hardware designers and would

significantly benefit the process of designing and deploying

efficient DNNs. Additionally, such a cost-model could signif-

icantly improve the search-time, and even the performance,

of hardware-aware Neural Architecture Search algorithms [2],

[12] and domain-specific compilers [3], [13] across a wide-

variety of hardware devices.

The rest of the paper is organized as follows. In Section

II, we detail the procedure used to collect data across mobile

devices, and share results of exploratory data analysis on the

collected measurements. In Section III, we describe our core

contribution of generalizable cost models. We then present and

discuss experimental results in Section IV. We illustrate col-

laborative workload characterisation in Section V. We discuss

related work in Section VI and conclude in Section VII.

II. DATASET COLLECTION AND EXPLORATORY ANALYSIS

In this section, we first describe our approach to collecting

run-time measurements across devices, which consists of two

components: a parameterized DNN generator and an Android

app framework. Figure 1 graphically illustrates these compo-

nents. We then perform exploratory data analysis to reveal

distributional and relational properties across the data. Our

analysis suggests that basic hardware features of a device are

insufficient for predicting latency across DNNs.

A. Parameterized DNN Generator

We perform the run-time measurements on mobile devices

across a benchmark suite of neural networks, consisting of

18 popular pre-designed networks and 100 randomly gener-

ated networks. The first set of networks includes hand-tuned

networks such as MobileNets [7], [8] and SqueezeNet [9], as

well as networks generated with Neural Architecture Search

170

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Distribution of FLOPs (in millions) for the 118 networks. The FLOPs
of the networks range from 400 million MACs to 800 million MACs

Fig. 3. Histogram of CPUs for the 105 devices. The devices show significant
diversity from Cortex-A53, which is almost eight years old, to Kryo-585, a
few months old. These diverse CPUs capture various micro-architectural and
technology changes across processor generations.

(NAS) [1], [2], [10], [11]. The randomly generated networks

in the second set are obtained using an in-house parameterized

DNN generator — a PyTorch [14] framework to generate

arbitrary but valid DNNs within a user-defined search space.

This search space has been adapted from popular hardware-

aware NAS frameworks [2], [11], [12] and is composed of dif-

ferent operators and parameters, as illustrated in Figure 1. The

operator set covers the spectrum of network design patterns

used in mobile DNNs including inverted bottleneck layers,

convolutions, activations, pooling and skip-connections. The

parameter set captures network features such as number of

layers, kernel size, number of input and output channels, stride,

padding, groups etc. These networks are diverse: We visualize

this diversity along the axis of FLOPs required to run inference

on these networks in Figure 2.

B. Android App for Latency Measurement

To measure the latency on a large set of devices, we chose to

develop an Android app and crowd-source the measurements.

Our Android app uses the TFLite [15] runtime APIs to

measure the inference latency of DNNs, as it is competitive

in terms of performance among mobile DNN frameworks.

Since our DNN generator outputs PyTorch networks, we first

convert them to TFLite models using ONNX [16]. In order

to optimize the application size and encourage more users to

participate in the crowd-sourcing, we quantized the networks

to int8 precision using TFLite’s post-training quantizer, as

shown in Figure 1. Such quantization is routinely performed

and represents the typical deployment procedure for mobile

devices [17].

Many mobile devices contain accelerators such as GPUs,

DSPs and even Neural Processing Units (NPUs), in addition

to CPUs. However, a majority of edge inference workloads

still run on low-power CPUs, while only a fraction of them

are run on GPUs and NPUs [6]. Further, programmability

of these available GPUs and NPUs is a major bottleneck.

We observed that the GPU and NPU Android API delegates

were either limited to a certain class of mobile phones or

were prone to unexpected outcomes (very high latency) or

crashes. To ensure reliable collection of measurements across

a large set of mobile devices, we restrict our focus to mobile

CPUs. However, the methodology presented in the subsequent

sections would also apply to execution on GPUs and NPUs.

Our Android application sequentially schedules each of the

118 quantized DNNs to one of the big CPU cores in the

mobile’s big.Little CPUs, similar to the technique followed

by the authors of MobileNetV3 [12]. We measure the single-

threaded inference latency of all the networks on a single large

CPU with a batch size of one and average the values across

30 runs. The values are automatically transmitted to a public

server via HTTP upon completion of the application.

Our application was made available publicly

(https://hwcostmodels.github.io), allowing us to gather

measurements of 118 networks on 105 mobile devices,

resulting in a total of 12,390 data points (each of which is a

mean of 30 measurements). Figure 3 shows the distribution of

CPUs in this set. As can be seen, there is a large diversity of

devices across multiple chipsets (38 unique types), and core

families (22 unique types). We estimate that these devices

represent the CPUs in roughly 72% of mobile device in the

field today [6].

C. Exploratory Data Analysis

We next present results of exploratory data analysis on

the collected measurements. Our objectives in this analysis

are twofold. One, to visualize the variation of latency across

networks and hardware and to thereby identify clusters of

similar hardware devices and networks. Two, to identify any

obvious patterns that relate the hardware and network features

to the measured latencies.

Clustering Devices. To begin, we cluster the hardware

devices where each device is represented by a 118 dimensional

vector corresponding to the latency on all networks. We use the

standard k-means clustering algorithm with different values of

k (the number of clusters). We find that k = 3 is a good choice

dividing the devices into three clusters which we call fast,
medium, and slow, since they demonstrate mean latencies of

171

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. 105 hardware devices categorized into 3 clusters: fast, medium and slow via K-means culstering. The above plots show the latency distribution of the
clusters in that order. The violin plot shows the distribution, mean latency, and median latency for each hardware. The fast, medium, and slow clusters have
a mean latency of 50mns, 115ms, and 235ms respectively. The Venn diagram shows the CPUs that constitute each cluster.

50 ms, 115ms, and 235 ms, respectively. To provide a visuali-

sation of the latency measurements (beyond just a statistic like

mean), we draw violin plots of the latency measurements of

each device in Figure 4. The violin plots show the probability

density of latency across networks (along with median and

the inter-quartile range). Both the slow and medium clusters

have individually similar distributions indicating homogeneity,

while the fast cluster shows some diversity, denoting two sub-

clusters. In all cases, we observed that distributions are wide

(note the log scale on the y-axis) and distinctly bimodal.

Mapping CPUs to device clusters. We now analyse the

properties of the CPUs in each of the three clusters. In Figure

4, we also draw the Venn diagram to specify the CPUs in

hardware devices belonging to each cluster. We observe that

there exist some overlaps, i.e., certain CPUs belong to multiple

clusters. For instance, devices in both medium and fast clusters

have Cortex-A53 and Cortex-A72 CPUs. Similarly, there are

devices in all the three clusters that use a Kryo 280 CPU.

However, in most cases (80 out of 105 devices) the CPU

uniquely determines the device cluster. The average frequency

for the fast, medium, and slow clusters are 2.67, 2.1, and 1.9

GHz, respectively, while the mean DRAM capacities are 6, 3,

2 GB respectively. Thus, we have two observations: one, the

CPU often maps a device to a specific cluster, and two, the

specifications of CPUs across clusters are predictably varying.

This creates the expectation that we can estimate the latency

of a network based on specifications of the CPU.

Fig. 5. Latency vs. Frequency for various DRAM sizes for MobileNetV2
across 105 devices. The hue in the graph represents the DRAM size. There’s
a decreasing trend of average inference latency with increase in frequency.
But for a given frequency, there is significant variability in latency, even for
the same DRAM size.

Relating latency to CPU specification. We evaluate the

172

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. Distribution of latencies of devices in fast, medium and slow hardware clusters on small, large and giant network clusters. There are two key
observations: (i) Latency distribution of hardware clusters have similar patterns across network clusters, and (2) The overlapping latency distribution of
hardware clusters indicate that predicting the latency for a hardware based on its cluster is not possible.

above expectation by visualising in Figure 5 the latency

measured for MobileNetV2 [8] on all devices. The x-axis

denotes frequency and the hue captures the DRAM capacity

(a darker color denotes a larger DRAM capacity). Although

we can observe a decreasing trend in latency with increase

in frequency and DRAM size, there is still a significant

variation. For instance, devices that run at 1.8 GHz and have

3GB DRAM capacity show over 2.5x variability in latency,

ranging from 120 to 300ms. Clearly, this range is too broad

to enable accurate workload characterization. Hence, simple

hardware features like the core frequency and main memory

size seem insufficient in predicting latency. We analyse this

more formally and reach the same conclusion in the next

section, by measuring the accuracy of a machine learning

model trained with these features.

There are many other micro-architectural features such as

out-of-order processing, super-scalar processing, cache size,

and prefetching, which could affect latency. Analyzing the

right set of these features and quantifying their predictive ac-

curacy is a potentially interesting research direction. However,

we surmise that such detailed characterization is not readily

available to software developers looking to deploy DNNs

on to a wide range of devices. We thus take an alternative

approach of characterizing a device by a small number of

latency measurements, as will be discussed in the next section.

Controlling for both device and network clusters. Just as

we clustered the devices, we can similarly cluster the networks

where each network is represented by a 105-dimensional

vector given by the latency on all devices. We similarly found

that k-means clustering provided a good trade-off at k=3

with three clusters which we name as small, large, and giant
(due to a trend in number of FLOPs). Given this clustering,

we can ask: “How discriminative of latency are device and

network clusters”. In other words, how distinct are the latency

distributions when we control both for the device and network

clusters. We show this with the help of faceted density estimate

plots in Figure 6. In the case of all three network clusters

– small, large, and giant – the distributions across device

clusters are overlapping. Thus, even if we pick a specific

cluster for both the device and network, the measured latency

distributions are not distinct from each other.

In summary, our exploratory data analysis on the large

set of measurements reveals the qualitative conclusion that

measured latency shows a large distribution which cannot be

satisfactorily explained by simple hardware specifications or

network classes.

III. TOWARDS GENERALIZABLE COST MODELS

In this section, we present our main contribution on how

to represent a given network and hardware, and then discuss

how to use such representations to learn a latency model that

generalizes across hardware and networks.

A. Overview

What would it take for a cost model to generalize across

hardware and networks? At the outset, we need representations
of both the network and the hardware. That is, given a DNN

we need to map it on to a vector, say N , that represents the

key features of that DNN. Similarly, each hardware needs

to be mapped to a vector of key features, say H . Then a

machine learning model, say M , could be trained to take as

inputs N,H and estimate the latency l of that network on

that device. Once such a model is trained, it can be used to

estimate the latency for different network-hardware pairs. A

model is said to generalize well if it accurately estimates the

latency on networks and hardware devices that are not present

in its training set. The natural question then is to identify right

choice for the representations N and H . A representation must

capture all features that are relevant to estimate the latency, but

avoid extraneous features that can slow down data collection or

increase inaccuracy in the training process. The representation

for a network is more straightforward and discussed first.

Subsequently, we discuss different choices for the hardware

representation.

B. Network Representation
A DNN can be viewed as a graph with nodes describing

operators and edges describing the flow of data between

the operators. Example operators include convolution, fully-

connected neurons, recurrent neurons, pooling, activation and

skip connections. Often, the graphs are linear wherein opera-

tors are stacked sequentially in what are called layers. Each

173

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. This diagram shows our proposed cost model that takes in the
representation of DNN and hardware as input to predict the latency of that
DNN on that hardware. We represent each DNN by recursively encoding the
layer identifier (one-hot) and its parameters. Each hardware is represented
using a vector containing measured inference latencies on the signature set.
We use XGBoost to train our cost model on inference latency data.

operator or layer has specific parameters, which characterize

how it operates on the input. For instance, a convolution

operator has parameters such as stride, padding, and kernel

size. Thus, we can represent a DNN layer-wise: For each

layer, we can represent the input and output sizes as is, the

operator as a one-hot encoded vector, and its parameters as

a sequence of numbers. Such representations across layers

can be concatenated to create a single vector for the network.

The length of such a representation would depend upon the

number of layers in the network and thus would vary across

networks. To enable that such representations can be processed

by a larger class of machine learning models, we apply the

standard procedure called masking, whereby we pad each

representation by dummy values to match the size of the

longest representation. Thus, our representation of a network

is a concatenation of layer-wise representations as illustrated

in Figure 7. We note that, though this proposal is only one

of several representations of DNNs, there is neither much

ambiguity or choice in the features to capture. On the other

hand, the representation of the hardware is more open to

choice, as we discuss next.

C. Hardware Representation

The hardware representation should map a given device on

to a vector that captures all hardware characteristics required

to predict latency on different networks. A first solution

is to utilize essential hardware specifications, such as core

frequency, main memory size and CPU family. Specifically,

we choose to represent a device by three components: a one-

hot vector representing the CPU model (eg. Cortex-A53 or

Kryo 485, see Figure 3 for the full list in our dataset), an

integer corresponding to the CPU frequency, and an integer

corresponding to the main memory size. As we discussed

earlier, while more features such as cache size or pipeline

depth can be added to the representation, they are not readily

available to software developers. Further, the CPU model itself

may represent these more detailed features such as pipeline

depth. For instance, we would not expect that two devices

with the same make (say Cortex-A53) and the same frequency

would differ in specific micro-architectural features.

In order to measure the effectiveness of such a hardware

representation in learning latency models, we train a machine

learning model of the form shown in Figure 7, and evaluate

its accuracy. We use XGBoost, which is an efficient model

based on parallel tree-boosting algorithm, as the model. The

XGBoost-based models are seen to work well in practice

especially in problems where training data-set is not particu-

larly large. Further, in our experiments XGBoost outperformed

many other models, including an LSTM-encoder followed

by a fully-connected neural network, a random-forest model,

and k-nearest neighbour models. First, we represent the 118

networks and the 105 hardware devices as discussed. We

then split the devices randomly into train (70%) and test

(30%) sets. The XGBoost model was trained on the train

set using the hyperparameters gbtree booster with lr = 0.1,
n estimators=100 and max depth = 3. The trained XGBoost

model then was used to estimate the latency for each of the

points in the test-set. The actual and predicted latency for each

of the inputs are shown in a scatter plot in Figure 8. The hue

of the points denotes the CPU frequency. We observe that the

model is unable to learn accurately as the points are spread out

far from the ideal y = x line. The coefficient of determination,

also popularly called R2 in this case was 0.13, which indicates

a poor predictive accuracy.

Fig. 8. Actual runtime versus predicted runtime of a cost model trained using
static parameters of a device as hardware representation. R2 Correlation value
is 0.13.

The above experiment reveals that the proposed hardware

representation is inadequate. As an alternative, we pose the

following question: “Can the latency of a chosen small set
of networks on a hardware platform be informative enough
to represent that hardware?”. In other words, a device is

represented not by its hardware specifications, but by mea-

suring latency of a small set of chosen networks. We call

this chosen set of networks the signature set. Note that such

174

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

a representation is convenient for software developers as it

can be obtained by executing the signature set on a given

device and measuring its latency. There are now two essential

questions. First, how big does the signature set need to be?

Second, how do we choose the networks that constitute the

signature set? We answer these two questions by proposing

three approaches in the remainder of this section. These

approaches are evaluated in the next section.

1) Random Sampling (RS): As the first approach, we

consider a simple random sampling (RS) technique. Given a

user-defined number of networks, we choose signature set by

uniformly sampling from the set of all networks. This sampling

requires a definition of the population of networks, which

must include a large diversity of networks that are expected

to be seen during latency estimation. For instance in our

case, the population includes the 118 networks comprising

both popular networks and generated networks. Since there

is no prior in selecting which networks form the signature set,

the performance of any trained cost model may vary across

samples.

Unlike the RS approach, the next two proposed methods

choose a signature set by maximizing a metric of gain. The

two metrics of gain used are (i) Mutual Information, and (ii)

Spearman Correlation Coefficient.

2) Mutual Information Selection (MIS): Each network in

the signature set provides information on latency of a device

on the specific operators in that network. This suggests that

including two networks which have very similar latency pat-

terns across hardware devices is to be avoided. In other words,

we want to include networks in signature set which contribute

unique characterizations of the hardware device. Based on this

intuition, we propose to use mutual information or equivalently

information gain to guide the choice of signature set. Mutual

information between a pair of random variables captures the

amount of information obtained about one random variable

by observing the other random variable. More formally, it is

given by the following relation between joint and marginal

probability distributions of random variables X and Y :

I(X;Y) =
∑
y∈Y

∑
x∈X

p(X,Y)(x, y) log

(
p(X,Y)(x, y)

pX(x).pY (y)

)

Given this definition, a good choice of signature set is a sub-

set of networks that maximize the mutual information with the

entire set of networks. Note that we treat the networks in signa-

ture set and outside it as two random variables whose samples

are given by the latency measurements on the devices. Finding

an optimal subset suffers from combinatorial explosion. As an

alternative, we follow a greedy iterative approach, wherein in

each iteration we add a single network into signature set. This

network is chosen such that its addition maximizes the mutual

information between the signature set and other networks. It is

known that the function that maps mutual information across

signature set is a submodular function and consequently a

greedy algorithm works well with a constant approximation

factor [18]. We detail the iterative process in Algorithm 1,

which takes as input the dataset matrix of latency measure-

ments where n networks are arranged in rows and its latencies

on h hardware devices are arranged in columns. The initial

network is chosen randomly and all subsequent networks are

chosen to maximize the greedy mutual information objective.

The number of networks, m, to be added to the signature set is

a user-defined variable.

Algorithm 1: Mutual Information Selection (MIS)

Input : dataset, n×h matrix containing inference

latencies of n networks on h hardware

Input : m, Number of networks to be selected

subset← {initialChoice(network)}
for k = 1 to m− 1 do

max info← 0
for j = 1 to n do

subsetTemp← subset ∪ j
newV ← dataset[j] // h sized vector
subsetMat← dataset[subsetTemp]
info← ComputeMI(subsetMat, newV)
index← (info ≥ max info) ? j : index
max info← max(info, max info)

end
subset← subset ∪ index

end

3) Spearman Correlation Coefficient Selection (SCCS):
While the Mutual Information metric captures conditional

probability between pairs of random variables, we may want to

abstract some of the detail in the measurements. For instance,

instead of predicting the exact latency of different networks

for a given hardware, we may only be concerned with sorting

the networks in terms of latency. This is particularly relevant

in finding an efficient network for a given hardware, as is

done in NAS. We thus propose to look at the Spearman

correlation coefficient as an alternative metric for choosing

the signature set. This coefficient is defined as the Pearson

correlation coefficient on the rank of the two random variables,

i.e., instead of computing the Pearson correlation on two

variables X and Y , we instead compute it on the ranks of

the variables.

Unlike in the case of Mutual Information, the Spearman

Correlation Coefficient can only be computed for networks

pair-wise. We thus follow a modified iterative greedy heuristic

to choose signature set. First, we compute the coefficient for

each pair of networks, and then choose the network which

has the highest number of coefficients greater than a threshold

γ (typically close to 1). We then remove from the set of all

networks, all those networks which have a correlation coef-

ficient with the chosen network greater than γ. This removal

signals that those networks which are highly correlated to the

chosen network can be removed from further consideration.

In the remaining set of networks, this procedure is repeated

to add each time one additional network to signature set. We

detail this procedure in Algorithm 2, which takes as input a

175

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

square matrix, ρ, where each cell represents the correlation

coefficient for a given pair of networks.

Algorithm 2: Spearman Correlation Coefficient Selec-

tion (SCCS)

Input : ρ, n×n matrix containing Spearman

Correlation between all pairs of networks

across all hardware

Input : m, Number of networks to be selected

Input : γ, Correlation Threshold

subset← ∅
for k = 1 to m do

index← argmaxi

n∑
j=1

ρ[i][j] ≥ γ

subset← subset ∪ index
highCorr ← ∅
for j = 1 to n do

if ρ[index][j] ≥ t then
highCorr ← related ∪ j

end
end
Delete highCorr networks from ρ

end

In summary, we discussed the network and hardware repre-

sentations. The network representation is a representation of

layer-wise features. The hardware representation given by top-

level specifications did not produce accurate cost models. We

thus consider the usage of a signature set to represent a device,

and propose three ways to select the signature set.

IV. RESULTS

In this section, we first present the methodology adopted

in our experiments. We then present results which evaluate

the cost models that are learnt with the different hardware

representations.

A. Experimental Methodology

In all our experiments we use XGBoost as the ML regres-

sion model of choice to build the cost model. To evaluate

the generalizability of our learnt models, we split the devices

into train (70%) and test (30%) sets. The two sets contain

the latency of all the 118 networks for every hardware in that

set. Only the hardware devices in the training set, participate

in choosing the signature set of networks for the hardware

representation. Once the signature set networks are chosen,

their latency on all the hardware devices in the train and the

test set are discarded. We then train the XGBoost model with

the remainder of the training set data. We use the root mean

square error (RMSE) loss function for optimizing the learning

model. The same hyperparameters described in Section III-C

are used. Once the model is trained, we evaluate it on the test

set with the co-efficient of determination (R2) as the metric.

B. Comparison of Methods to select signature set

As the first set of experiments, we choose 10 as the size of

signature set and compare the three methods of choosing the

signature set. The accuracy of the models trained with three

different signature sets are illustrated in Figure 9. We plot the

actual-vs-predicted latency for all network-hardware pairs in

the test set. The points are closer to the y = x line denoting

higher accuracy (in contrast with Figure 8). Quantitatively, the

accuracy of the model is captured by high R2 values: 0.9125,

0.944, and 0.943 for RS, MIS, and SCCS, respectively. Notice

that the plots in Figure 9 also qualify the generalization of the

models, since the plotted values are on the test set which have

hardware devices that are unseen by the model during training.

Amongst the three approaches to choose signature set, MIS

and SCCS perform better with higher R2 values. However,

we find that even the naı̈ve choice of signature set based

on random sampling performs competitively. This illustrates

the effectiveness of our approach of representing a device by

latency measurements on few (in this case 10) networks.

There are two further questions. First, are there any chal-

lenges with random selection of signature set - in particular is

the method robust with no poorly performing outliers? Second,

what is a good choice for the size of signature set?

C. Variation across randomly chosen signature set

We now study the robustness of the randomly chosen

signature set. We randomly sample 100 different signature
sets each of size 10, and use them to compute hardware

representations. For each representation, we train a different

model with XGBoost. Figure 10 shows the test R2 score

for each such trained model. From the plot it is clear that

models learnt with randomly chosen signature set hardware

representations perform on average competitively. The average

R2 score for RS is 0.93, compared to 0.944, and 0.943 with

MIS and SCCS, respectively. However, there are samples

where the model performs relatively worse: a low R2 score of

0.875 for 2 of the models. These outliers, though infrequent,

highlight the challenge with random sampling, wherein they

may generate representations leading to poor models. Thus,

we recommend the deterministic methods MIS or SCCS for

selecting signature set.

D. Evaluation of different sizes of signature set

We now evaluate the performance of models when using

different sizes of signature set. Clearly, a larger signature

set captures more detailed features of a hardware and may be

expected to increase accuracy of the cost model. However a

larger signature set implies higher cost in collecting the latency

measurements. We explore this trade-off for the three methods

for choosing signature set. Figure 11 plots the R2 metric for

the trained models for each choice of number of networks in

signature set. For the random sampling method, we report the

R2 values by averaging over 100 samples.

There is a general trend of improved accuracy on increasing

the size of signature set. In the case of random sampling, we

find that there is a consistent improvement with the rise in

176

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. Actual vs Predicted runtimes (in ms) for our hardware cost models learnt using the proposed hardware representations under different sampling
techniques. y=x is the ideal regression curve expected.

Fig. 10. R2 value for 100 different randomly chosen signature sets. They
perform competitively against MIS and SCCS. However, there are some
outliers that may generate representations leading to poor models.

the number of networks, even to sizes of over 20. Thus, if

we could afford a larger set of measurements, then random

sampling provides a simpler method to select signature set.

However, we recall again the caution that some of these

random samples may be outliers and lead to inaccurate models.

For MIS and SCCS the R2 is around 0.94 even for small

signature sets. Based on these results, we identify that a

signature set of sizes 5-10 are good choices when using these

deterministic selection methods, amounting to a sampling ratio

of 4-8% from the total set of networks (118 in total). Selecting

networks beyond this fraction does not increase accuracy

indicating a saturation in mutual information gain in the case

of MIS, or high pair-wise correlation in the case of SCCS.

E. Generalizability between hardware clusters

So far, the results have indicated that signature set is an

effective way of representing hardware for training generaliz-

able cost models. We now experiment to identify limits to this

generalizability. In particular, we consider adversarial splits of

the hardware devices amongst train and test sets. Instead of

splitting the devices randomly between train and test sets, we

choose them based on the clustering presented in Figure 4 into

fast, medium, and slow devices. As the violin plots of Figure 4

Fig. 11. Accuracy scaling with increase in the number of networks in
signature set. A larger signature set captures detailed features of hardware.
However, it implies higher characterisation cost.

show, devices across these clusters differ significantly in their

latency characteristics. We choose devices from two clusters

as the training set, and those from the third as the test set. The

size of the signature set is set to 10. For each of these settings

we report the R2 values on the trained models for signature

set chosen according to the three methods - RS, MIS, and

SCCS in Table I. As an example, the R2 value of 0.912 in

the first cell is for the case of random sampling of signature

set, the model trained on the medium and slow clusters, and

tested on the fast cluster.

From the results we make two observations. Firstly, the

models generalize relatively better when medium and slow

clusters are used as test sets. This suggests that devices

in the fast cluster generate more generalizable cost models.

Conversely, when the fast cluster is used as the test test, models

perform poorly indicating that the devices in the medium and

slow cluster do not learn cost models that generalize to the fast

cluster. Perhaps, the devices in the fast cluster have micro-

architectural features quite different from those in the other

two clusters. Thus, when in the devices chosen in the training

set, diversity must be maintained. Secondly, we highlight

again the surprising generalization that the cost models show

across hardware. With measurements on CPUs of fast and

177

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

TABLE I
TEST SET R2 SCORE FOR A COSTMODEL TRAINED ON TWO HARDWARE

CLUSTERS AND TESTED ON THE THIRD CLUSTER

Subsetting
Technique

Coefficient of determination (R2)
Fast Medium Slow

Random
Sampling

0.912 0.964 0.975

Mutual
Information

0.916 0.973 0.967

Spearman
Correlation

0.949 0.976 0.97

medium mobile devices and representations of hardware on

10 randomly sampled networks, the trained models predict

latency on slow mobile devices with R2 over 0.97. This result

reaffirms our confidence that the presented methodology is

effective in learning generalizable cost models.

V. PROPOSED COST MODEL IN PRACTICE:

COLLABORATIVE WORKLOAD CHARACTERISATION

In this section, we discuss a practical setting wherein gen-

eralizable cost models are used to collaboratively characterize

networks on different hardware. With a simulation on the real

data-set we quantify the benefits of such collaboration.

Our method proposed so far has two requirements: (a)

representation of each hardware in terms of the measured

latency on a signature set, and (b) a training set of latency

measurements on a diverse set of devices. Our results show

that the signature set can be fairly small, but the training set

needs representation of a diverse set of devices. Thus, the

requirement of the training set is still a bottleneck. Principally

there are two approaches to generate a training-set. One,

collect latency measurements on a common but large set of

different networks for a limited set of devices. Two, collect a

small number of measurements on a very large set of diverse

devices. The question then is: “For the latter case to be more

effective, how small can the number of measurements be for

each device and how large must be the set of devices?” Or

differently stated, in the latter collaborative case, how many

devices should collaborate and what should be the quantum of

contribution of each device for training accurate cost models.

A. Simulation methodology

To study the collaborative case, we run a simulation with our

measured values. The simulation is iterative and is as below:

• First we choose the signature set of size 10 using MIS

on all networks (from our collected list of networks).

• In each iteration, a new hardware platform (from our

collected list of devices) is added. Such a hardware

platform contributes its representation as given by latency

on signature set. In addition, each hardware contributes

latency on a small percentage (10-30%) of randomly

chosen networks (from our collected list of networks).

• At each iteration, a XGBoost model is trained to pre-

dict latency where the training set comprises all latency

measurements contributed by previously chosen hardware

devices. We then report the model’s average R2 when

evaluated on all networks (in our collected list of net-

works) for the hardware devices added till then.

• This process continues for 50 such iterations.

This simulation thus studies the evolution of the quality

of a model trained incrementally as one new hardware is

added, wherein the contribution from each hardware is the

measurements on the signature set and a small percentage of

the networks as training data.

B. Evaluation

First we study how the models learnt collaboratively evolve

as more devices are added. Figure 12 shows the average R2

of the learnt collaborative model as each device is added. In

addition, we perform experiments for varying percentages of

network contributions for each device, from 10-30%. Note that

the average R2 is taken across added devices on all networks

(well beyond the training set). Clearly, models become more

accurate as devices continue to be added. We find it surprising

that even with 10 devices the trained models have R2 values

greater than 0.9 in each case. However, if we are interested

in highly accurate models with R2 greater than 0.95, more

than 40 devices would be needed. We also observe that when

each device contributes as low as 10% of randomly chosen

networks as training set, we can still learn accurate models.

Fig. 12. Average R2 score of the collaborative cost model with increase in
the number of devices with each device contributing 10-30% of networks as
training data.

C. Collaborative vs isolated training of the cost model

The above experiment quantified the evolution of accuracy

of the collaborative model. However, to fully value the col-

laborative process we compare it with the case of training a

cost model for a hardware, separately without collaboration.

We illustrate this for the Redmi Note 5 Pro device, that uses

a Kryo 260 Gold CPU.

First, we train a latency cost model for Redmi Note 5 Pro.

Instead of training a single model, we train an entire sequence

of models varying the number of networks in the training set

from 1 to the entire set of 118 networks. Each such model is

evaluated on a test-set of all 118 networks, in terms of the R2

178

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

score. The evolution of these R2 scores as more networks are

added is shown in Figure 13. Clearly accuracy improves with

more networks, but with marked regions of slow and rapid

progress.

Fig. 13. R2 score for the collaborative model vs. individual model for Redmi
Note 5 Pro. The accuracy of the single model improves as more networks are
added. However, in the case of collaborative cost model it has an R2 value
of 0.98 on the test set of all networks for contributing just 10 measurements
(11x lower) making a compelling case for collaboration.

We contrast this with the case of collaborative cost model.

We consider 50 randomly chosen devices, of which Redmi

Note 5 Pro is one, with each device contributing only 10

measurements on the signature set and 10 measurements on

other randomly chosen networks. In this case, the learnt cost

model has a R2 value of 0.98 on the test set of all networks on

the Redmi Note 5 Pro device. Thus, with just 10 measurements

from each device, we obtain an accuracy on the Redmi Note

5 Pro device which matches that when trained with more than

100 networks (see Figure 13).

This experiment makes a compelling case for collabora-

tion. Multiple parties can share latency measurements and

network properties to a shared repository along with latency

measurements on a commonly agreed signature set. If such a

collaboration can be enabled, then joint cost models can be

learnt whose accuracy would otherwise require an order of

magnitude more number of measurements if done in isolation

for that device.

VI. RELATED WORK

There have been many prior works that use a cost model to

predict the execution of a DNN for a given hardware. The dif-

ferent efforts can be categorized into two broad themes, based

on the context of the modelling: domain specific compilers
and neural architecture search.

Domain specific compilers for Deep Learning use latency

cost models to guide the exploration of finding an optimal

mapping of a DNN for a given hardware platform [3], [4]. One

such compiler, TVM, proposes the use of XGBoost [19] and

Tree-GRU based learning models to predict the runtime of a

DNN operator for a given hardware target. It employs a novel,

transferable input representation of high level programs based

on its Abstract Syntax Tree (AST) to enable generalization

across a wide range of DNN operators. Halide is another

compiler effort for image processing [4] that uses a simple

MLP based cost-model guided by a carefully chosen set of

large number of program features for predicting the execution-

time of a program schedule. A recent effort from Google [5]

develops a cost-model to accurately estimate the execution-

time of an ML model running on Tensor Processing Units

(TPU). They use GraphSage, a graph library to extract features

or embeddings from a DNN, followed by a feedforward layer

to estimate the execution time of the DNN on TPU. All these

efforts show strong generalizability across a wide range of

DNNs and its operators. However, the cost models are often

trained online, along with the search process, for a specific

hardware platform. Thus these methods are not designed or

tested for generalizability across devices. In contrast, our work

focuses on representations of different devices and learning

cost models that generalize across a wide variety of mobile

devices.

Neural Architecture Search (NAS) is an increasingly popular

technique of employing novel search strategies to design

DNNs within a large space of DNN operators and topolo-

gies. Often, hardware parameters such as latency and energy

efficiency are used as feedback to guide the search process.

In order to reduce the cost of obtaining these parameters

from the hardware, cost models are employed. For instance,

ProxylessNAS [2] and Once-for-All [20] employ a simple

MLP cost model to predict the latency of DNNs on mobile

devices. Similarly, ChamNet [21] creates a Look Up Table

(LUT) of common DNN operator latencies for Samsung S8

and uses an additive model to find the latency of any DNN that

is composed of these common operators. Similar to compiler

efforts, these cost models for NAS have to be trained for every

device separately. Again, our primary focus is to demonstrate

generalization across a large set of devices.

The methods proposed in our work are orthogonal to the

context in which the cost models are used: during compilation

or neural architecture search. Further, our work can be com-

bined with other representations of DNNs such as the graph-

based deep representations as in [5].

VII. CONCLUSION

Characterizing latency of DNNs on hardware devices is

challenging due to both network and device diversity. We

proposed a novel and easy-to-obtain representation of devices

given by the measured latency on a small signature set of

networks. We showed that with a careful choice of the

signature set and the machine learning model, we can learn

accurate models that generalize across networks and hardware.

We demonstrated these results on measurements collected

in the real world on a large diversity of mobile devices.

We also discussed how collaborative workload modelling is

significantly more efficient in comparison to learning cost

models separately for each device. Our work thus recommends

179

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

building a central repository, where network representations

and latency measurements across devices are used to train

a continually learning global cost model. Such a global cost

model would significantly reduce the computational and envi-

ronmental overhead in characterizing and fine-tuning DNNs,

both during Neural Architecture Search and domain-specific

compilation. These results would be strengthened by extending

them to desktop- and server-grade devices.

REFERENCES

[1] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search for
mobile,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2019, pp. 2820–2828.

[2] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architecture
search on target task and hardware,” arXiv preprint arXiv:1812.00332,
2018.

[3] T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to optimize tensor programs,” in
Advances in Neural Information Processing Systems, 2018, pp. 3389–
3400.

[4] A. Adams, K. Ma, L. Anderson, R. Baghdadi, T.-M. Li, M. Gharbi,
B. Steiner, S. Johnson, K. Fatahalian, F. Durand et al., “Learning to op-
timize halide with tree search and random programs,” ACM Transactions
on Graphics (TOG), vol. 38, no. 4, pp. 1–12, 2019.

[5] S. Kaufman, P. M. Phothilimthana, and M. Burrows, “Learned TPU Cost
Model for XLA Tensor Programs,” in Proceedings of the Workshop on
ML for Systems at NeurIPS 2019, 2019, pp. 1–6.

[6] C.-J. Wu, D. Brooks, K. Chen, D. Chen, S. Choudhury, M. Dukhan,
K. Hazelwood, E. Isaac, Y. Jia, B. Jia et al., “Machine learning at
facebook: Understanding inference at the edge,” in 2019 IEEE Interna-
tional Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2019, pp. 331–344.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[8] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2018, pp. 4510–4520.

[9] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[10] B. Wu, X. Dai, P. Zhang, Y. Wang, F. Sun, Y. Wu, Y. Tian, P. Vajda,
Y. Jia, and K. Keutzer, “Fbnet: Hardware-aware efficient convnet design
via differentiable neural architecture search,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2019, pp.
10 734–10 742.

[11] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha,
J. Liu, and D. Marculescu, “Single-path nas: Designing hardware-
efficient convnets in less than 4 hours.”

[12] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang,
Y. Zhu, R. Pang, V. Vasudevan et al., “Searching for mobilenetv3,” in
Proceedings of the IEEE International Conference on Computer Vision,
2019, pp. 1314–1324.

[13] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in NIPS, 2017.

[14] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Advances
in neural information processing systems, 2019, pp. 8026–8037.

[15] “Tensorflow Lite.” [Online]. Available: https://www.tensorflow.org/lite
[16] J. Bai, F. Lu, K. Zhang et al., “Onnx: Open neural network exchange,”

https://github.com/onnx/onnx, 2019.
[17] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,

and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[18] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor placements
in gaussian processes: Theory, efficient algorithms and empirical stud-
ies,” Journal of Machine Learning Research, vol. 9, no. Feb, pp. 235–
284, 2008.

[19] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[20] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-all: Train
one network and specialize it for efficient deployment,” arXiv preprint
arXiv:1908.09791, 2019.

[21] X. Dai, P. Zhang, B. Wu, H. Yin, F. Sun, Y. Wang, M. Dukhan,
Y. Hu, Y. Wu, Y. Jia et al., “Chamnet: Towards efficient network
design through platform-aware model adaptation,” in Proceedings of the
IEEE Conference on computer vision and pattern recognition, 2019, pp.
11 398–11 407.

180

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOLOGY MADRAS. Downloaded on June 01,2021 at 09:53:15 UTC from IEEE Xplore. Restrictions apply.

